Lesson 1. Sample Paths

1 Course overview

- In this course, we will learn how to model and analyze systems that evolve <u>dynamically</u> over time and whose behavior is stochastic, or uncertain
- The models we will use to analyze such systems are called stochastic processes
- Numerous applications:
 - business and economics consumer behavior, portfolio management, inventory
 - military enemy movement, personnel dynamics, maintenance and readiness
 - medicine disease behavior, policy evaluation
- Techniques used: probability, statistics, matrix theory
- This lesson: an example illustrating some basic ideas

2 Sample paths

- A sample path is a record of the time-dependent behavior of a system
 - For example, the time that each customer arrives and departs at the drive-thru at Starbucks
- A sample path can be decomposed into inputs and logic
 - Inputs = arrival times and service times of customers
 - Logic = how the drive-thru operates: number of windows, first-come-first-served, etc.
- A **simulation** generates new sample paths resulting from changes in the input or logic without building a new system
- Sample path analysis uses sample paths generated by a simulation to determine system performance measures

3 Sample path analysis to study submarine behavior

Ballistic missile submarines act as a nuclear deterrence to enemy countries. These submarines move randomly throughout the ocean within a fixed grid assigned by a higher authority. Approximately every 20 minutes, the submarine will turn to change its course in order to clear its *baffles*, the area directly behind the submarine where sonar cannot detect sound.

- Let's consider the movement of a single submarine
- Suppose the submarine operates in an 11 × 11 grid (see page 5)
- The submarine starts at box (0,0)
- Every 20 minutes, the submarine <u>randomly</u> selects 1 of the 8 cardinal directions (N, NE, E, SE, S, SW, W, NW) and moves one box in that direction
 - For example, after the first 20 minutes, if the submarine selects N, then it will move to box (0,1)

- We want to model the movement of the submarine over time
- Let's model time using the index set $N = \{0, 1, 2, ..., \}$ so that each time index represents
- Let S_n denote the position of the submarine at time n
 - For example, $S_0 =$
- Using an 8-sided die, generate a sample path representing the movement of the submarine for the first 100 minutes (see page 5)
 - Repeat this 10 times and record your submarine's 10 final locations
- Did you generate the same sample path multiple times?
- Assume that you have a fair die. What is the probability that the submarine moves N on the first roll?
- Based on the sample paths you generated, what is the probability that the submarine moves N on the first roll? (In other words, what percentage of time did the submarine move N on the first roll in your simulations?)
- How many possible sample paths can be generated?
- In general, what kind of information can you learn from generating many sample paths?

- Suppose we ran this same experiment, but with many more repetitions for example, generating
 - 100 sample paths
 - 1,000 sample paths
 - 10,000 sample paths
 - 1,000,000 sample paths
- We would get something that looks like this:

• What do you observe in the probability distributions above?

4 What's next?

- In this lesson's example, we generated sample paths to determine an **empirical probability distribution** for the state of the system i.e., the location of the submarine after 100 minutes
 - An empirical probability distribution is based on the frequency of observed data
- If we make certain reasonable assumptions, we can mathematically analyze sample paths without actually generating them and determine a **theoretical probability distribution** for the state of the system
 - A theoretical probability distribution is based on logic or mathematical formulas
- These kinds of models are the focus of this course for example:
 - Poisson processes
 - Markov chains
 - Markov processes and queueing systems
- Such models are used in real-world applications
 - For example, the Undersea Warfighting Development Center in Groton, CT uses Markov chains to model the movement of submarines

Roll the 8-sided die to generate 10 sample paths representing the submarine's movements for the first 100 minutes. Use the following key to determine which cardinal direction the submarine should move.

1	2	3	4	5	6	7	8
Ν	NE	Е	SE	S	SW	W	NW

(-5,5)	(-4,5)	(-3,5)	(-2,5)	(-1,5)	(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)
(-5,4)	(-4,4)	(-3,4)	(-2,4)	(-1,4)	(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)
(-5,3)	(-4,3)	(-3,3)	(-2,3)	(-1,3)	(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)
(-5,2)	(-4,2)	(-3,2)	(-2,2)	(-1,2)	(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(-5,1)	(-4,1)	(-3,1)	(-2,1)	(-1,1)	(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(-5,0)	(-4,0)	(-3,0)	(-2,0)	(-1,0)	(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)
(-5, -1)	(-4, -1)	(-3, -1)	(-2, -1)	(-1, -1)	(0, -1)	(1, -1)	(2, -1)	(3, -1)	(4, -1)	(5, -1)
(-5, -2)	(-4, -2)	(-3, -2)	(-2, -2)	(-1, -2)	(0,-2)	(1, -2)	(2, -2)	(3, -2)	(4, -2)	(5, -2)
(-5, -3)	(-4, -3)	(-3, -3)	(-2, -3)	(-1, -3)	(0, -3)	(1, -3)	(2, -3)	(3, -3)	(4, -3)	(5, -3)
(-5, -4)	(-4,-4)	(-3, -4)	(-2,-4)	(-1, -4)	(0,-4)	(1, -4)	(2,-4)	(3, -4)	(4,-4)	(5,-4)
(-5, -5)	(-4, -5)	(-3, -5)	(-2, -5)	(-1, -5)	(0, -5)	(1, -5)	(2, -5)	(3, -5)	(4, -5)	(5, -5)